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Abstract

We discuss the properties of matrix-valued continued fractions based on Samelson inverse.

We begin to establish a recurrence relation for the approximants of matrix-valued continued

fractions. Using this recurrence relation, we obtain a formula for the difference between mth

and nth approximants of matrix-valued continued fractions. Based on this formula, we give

some necessary and sufficient conditions for the convergence of matrix-valued continued

fractions, and at the same time, we give the estimate of the rate of convergence. This paper

shows that some famous results in the scalar case can be generalized to the matrix case, even

some of them are exact generalizations of the scalar results.
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1. Introduction

A continued fraction is an expression of the form

b0 þ
a1j
j b1

þ a2j
jb2

þ?þ anj
jbn

þ?; ð1:1Þ
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where the ai and bi are real (or complex) numbers or functions, and the theories and
properties of continued fractions are well known in the scalar case. But more general
forms of continued fraction (1.1) where ai and bi are no longer real or complex
numbers are possible. They may be vectors, matrixes or the elements of some Banach
algebra. There clearly exists some interest in extending these kinds of theories and
properties to the vector or matrix case, and these extensions occur in computations
of various mathematical, physical and control problems [see [2,5,7–19,23,25,30,31]].
For example, in control theory for expansion of the transfer function of multivariate
control systems, in theoretical physics for investigations of the Brownian motion and
of the an harmonic oscillator eigenvalues, in perturbation theory, as well as in
rational interpolation and approximation. Here, we especially refer to the works of
Wynn et al. In 1963, Wynn used continued fractions and generalized inverses for the
reciprocals of vector-valued quantities, and proposed a method of rational
interpolation of vector-valued quantities given on a set of distinct interpolation
points [see [32,33]]. In [7–13,25,30], Graves-Morris, etc., showed that the generalized
(Samelson) inverse of vector can be used to define vector-valued Thiele type rational
interpolations and vector Padé approximants, and indicated that generalized inverse
vector rational interpolations had wide applications in the modal analysis of
vibrating structures and the solution of integral equations. In [14,15,17,18,34,35],
Zhu Gong-qin and C.Q. Gu, etc., introduced the generalized inverse vector
continued fraction approximation of vector-valued functions and indicated that the
generalized inverse vector rational interpolant can be extended to the bivariate and
the matrix case. In [35], by defining a kind of transformation from matrix to vector,
some results on vector-valued continued fraction can be transferred to those
corresponding to matrix-valued continued fraction, but, as we know, vector-valued
continued fraction is obviously special case of matrix-valued continued fraction.
Therefore, in this paper, we restrict our considerations to the matrix case. Here, we
should point out that a different matrix inverse can give the different definition of a
matrix continued fraction, so we can extend definition from the scalar case to the
matrix case in the following three ways. In [1,2,19,23,24,26], the fraction of matrix is

AB�1 with the classical inverse matrix, and in [3,6,28,29,31], the inverse of matrix is a
partial inverse, namely, if the matrix B ¼ ðbijÞm�n; then the partial inverse of matrix

B is

1

B
¼ ðBÞ�1

P ¼ B2B�1
1

here,

B1 ¼

bm;1 ? ? bm;n

1 ? ? 0

0 & 0

0 ? 1 0

0
BBB@

1
CCCA

n�n

;

H.-xi. Zhao, G. Zhu / Journal of Approximation Theory 120 (2003) 136–152 137



B2 ¼

0 ? 0 1

b11 ? ? b1;n

? ?

bm�1;1 bm�1;n

0
BBB@

1
CCCA

m�n

:

Therefore, for convenience the above matrix continued fractions defined by the
classical matrix inverse or partial matrix inverse are called the classical inverse matrix
continued fractions or the partial inverse matrix continued fractions, respectively,
and they are both examples of noncommutative continued fractions in Banach
spaces. In our case, the evaluation process is based on the use of the generalized
inverse for matrix [see Section 2 or [14,16,35]], so the considered continued fractions
which can be named matrix-valued continued fractions or generalized inverse matrix
continued fractions in this paper, is not the same as these in [1–3,5,19,23,24,26–
28,31]. In [16], it is shown that the generalized inverse is efficient in matrix continued
fraction interpolation problems as compared with classical matrix inverse, and as
compared to the existing matrix Padé approximants, the generalized inverse matrix
Padé approximation has a lot of advantages. For example, first, it does not need
multiplication of matrices in the construction process, hence, we do not have to
define left- and right-handed approximants, and it may be useful in the
noncommutativity problems of the matrix multiplication. Second, the generalized
inverse matrix Padé approximation can be applied to singular or rectangle matrices.

For the classical inverse or partial inverse matrix continued fractions, some
properties about them are obtained [see [1,3,5,24,27,28,31]], But in our case, not
much are known, and many problems are not still answered. For example, can the
classical three term recurrence relation be generalized in a practical way to our case?
How to get the properties of the approximants of MVCF? In particular, the
applications of continued fractions are often tied to their possible convergence,
therefore, the convergence criteria are important in the theory of matrix-valued
continued fractions. But up to now, the convergence property for MVCF has not
been reported. In scalar case, the main methods we use to derive the convergence
criteria for continued fractions are based upon three term recurrence relation or
some very nice mapping properties of linear fractional transformations or value
regions techniques for continued fractions. However, in more general case, such as in
our case, it should be noted that it appear difficult to find recurrence relations similar
to the famous three-term recurrence relation which can be used to derive surprisingly
good results in the convergence theory for continued fractions. Therefore, those
methods cannot be used in the proofs of the convergence criteria for MVCF. In [34],
using a particular technique, a simple Pringsheim convergence theorem was proven

for vector-valued continued fraction of the form K ½1=~bbk	; but it may be difficult or
even impossible to prove best known and(or) the widest applicable classical
convergence theorems for MVCF directly using the method introduced in [3,5,11,20–
22,24,27,28,31,34]. In this paper, we answer some of these questions. We firstly
establish a recurrence relation for MVCF, and using this recurrence, we construct a
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formula for the difference between mth and nth approximants of MVCF. Based on
this formula, we give a approach to prove the convergence properties of MVCF.
This paper shows that some famous results in the scalar case are similar to those in
the matrix case, even some of them are exact generalizations or improvement of the
scalar results.

2. Recurrence relation

By a matrix-valued continued fraction, we mean an expression of the form

B0 þ
XN
i¼1

aij
jBi

; ð2:1Þ

where BiACk�l ; aiAC; for i ¼ 0; 1; 2;y:
The above evaluation process is based on the use of the generalized (Samelson)

inverse for matrix:

A�1 ¼ %A=jjAjj2; Aa0; ð2:2Þ

where %A denotes the complex conjugate of matrix A and

jjAjj2 ¼ trðAð %AÞTÞ ¼
Xk

i¼1

Xl

j¼1

jaij j2; A ¼ ðaijÞACk�l ; k; lAN

where ð %AÞT denotes the complex conjugate transpose of matrix A and jaij j is the

modulus of aij : Making use of the above generalized inverse for matrix, matrix-

valued continued fractions have been discussed in [14,17,18].
Similar to the scalar case, the nth approximant of MVCF is defined as

Rn ¼ B0 þ
a1j
jB1

þ?þ anj
jBn

ðn ¼ 0; 1;yÞ: ð2:3aÞ

Clearly, Rn is a rational expression

Rn ¼ Pn

Qn

;

where Pn and Qn are, respectively, called the nth numerator and denominator of

(2.3a), and they are actually defined later as P0
n;Q0

n via (2.4)–(2.6).

The truncation

Rk
n ¼ Bk þ

akþ1j
jBkþ1

þ?þ anj
jBn

ðn ¼ 0; 1;y:; k ¼ 0; 1;y; nÞ ð2:3bÞ

is called the kth tail of the nth approximant of MVCF (2.1).

Similarly, Rk
n is a rational expression

Rk
n ¼ Pk

n

Qk
n

;

H.-xi. Zhao, G. Zhu / Journal of Approximation Theory 120 (2003) 136–152 139



where Pk
n and Qk

n ; are, respectively, called the kth numerator and denominator of

(2.3b).
Clearly, we have

Rn ¼ Pn

Qn

¼ R0
n ¼ P0

n

Q0
n

:

Now, we want to establish a recurrence relation for Pk
n and Qk

n : Namely, we have

Theorem 1. For any positive integer n, let

Pn
n ¼ Bn; Qn

n ¼ 1; Qn�1
n ¼ jjBnjj2 ðn ¼ 1; 2;yÞ; ð2:4Þ

Pi
n ¼ BiQ

i
n þ aiþ1 %P

iþ1
n ði ¼ n � 1;y; 0Þ; ð2:5Þ

Qi
n ¼ jjBiþ1jj2Qiþ1

n þ 2 Re½trð %aiþ2Piþ2
n BT

iþ1Þ	 þ jaiþ2j2Qiþ2
n

ði ¼ n � 2;y; 1; 0Þ; ð2:6Þ

then we have

ð1Þ Qi
nX0 ðn ¼ 0; 1;y; i ¼ n; n � 1;y; 1; 0Þ; ð2:7Þ

ð2Þ jjPi
njj

2 ¼ Qi
nQi�1

n ði ¼ n; n � 1;y; 1Þ; ð2:8Þ

ð3Þ Ri
n ¼ Pi

n

Qi
n

¼ Bi þ
aiþ1j
jBiþ1

þ aiþ2j
jBiþ2

þ?þ anj
jBn

ði ¼ n; n � 1;y; 1; 0Þ: ð2:9Þ

Proof. The proof is performed by induction.
(1) For any kpn; from (2.6), we have

Qk
n ¼ jjBkþ1jj2Qkþ1

n þ 2Re½trð %akþ2Pkþ2
n BT

kþ1Þ	 þ jakþ2j2Qkþ2
n

X jjBkþ1jj2Qkþ1
n � jtrð %akþ2Pkþ2

n BT
kþ1Þ þ trðakþ2ð %Bkþ1ÞT %Pkþ2

n Þj þ jakþ2j2Qkþ2
n

X jjBkþ1jj2Qkþ1
n � 2jakþ2j 
 jjPkþ2

n jj 
 jjBkþ1jj þ jakþ2j2Qkþ2
n

¼ðjjBkþ1jj
ffiffiffiffiffiffiffiffiffiffiffi
Qkþ1

n

q
� jakþ2j

ffiffiffiffiffiffiffiffiffiffiffi
Qkþ2

n

q
Þ2X0

which completes the proof of relation (2.7).
(2) For i ¼ n , equality (2.8) is immediate from relation (2.4).
Now, let us assume that for i ¼ k; 1pkon; equality (2.8) is true. We shall

prove it for i ¼ k � 1: It follows from (2.5), (2.6) and by the induction hypothesis
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that

jjPk�1
n jj2 ¼ trfðBk�1Qk�1

n þ ak %Pk
nÞðð %Bk�1ÞT

Qk�1
n þ %akðPk

nÞ
T Þg

¼ jjBk�1jj2ðQk�1
n Þ2 þ Qk�1

n f½trð %akPk
nBT

k�1Þ	

þ tr½ %akPk
nBT

k�1	g þ jakj2jjPk
n jj

2

¼ jjBk�1jj2ðQk�1
n Þ2 þ Qk�1

n 2Reftrð %akPk
nBT

k�1Þg þ jakj2jjPk
n jj

2

¼Qk�1
n fjjBk�1jj2Qk�1

n þ 2Reftrð %akPk
nBT

k�1Þg þ jakj2Qk
ng

¼Qk�1
n Qk�2

n

which implies equality (2.8) is valid.
(3) When i ¼ n; from (2.4), formula (2.9) is obviously true.
Next, let equality (2.9) hold for i ¼ k: Then when i ¼ k � 1; from (2.5), (2.8) and

by the induction hypothesis, we have

Pk�1
n

Qk�1
n

¼Bk�1Qk�1
n þ ak %Pk

n

Qk�1
n

¼ Bk�1 þ
ak %Pk

n

Qk�1
n

¼ Bk�1 þ
akjjPk

n jj
2

Qk�1
n Pk

n

¼Bk�1 þ
ak

Pk
n

Qk
n

¼ Bk�1 þ
akj
jBk

þ akþ1j
jBkþ1

þ?þ anj
jBn

which completes the proof of (2.9) &

3. Approximants formulae

In this section, we give a formula for the difference between mth and nth
approximants of matrix-valued continued fractions. In general, those formulae are
important for truncation error estimate and convergence theory of MVCF.

Theorem 2. The formula

Pnþm

Qnþm

� Pn

Qn























¼
P0

nþm

Q0
nþm

� P0
n

Q0
n





















 ¼ ja1j?janþ1j

ffiffiffiffiffiffiffiffiffiffiffi
Qnþ1

nþm

q
ffiffiffiffiffiffi
Q0

n

p ffiffiffiffiffiffiffiffiffiffiffi
Q0

nþm

p for any n;mAN ð3:1Þ

holds true for two convergents Pnþm=Qnþm and Pn=Qn of matrix-valued continued

fraction (2.1).

Proof. Let

Pk
nþm

Qk
nþm

� Pk
n

Qk
n





















 ¼ Dk

Qk
nQk

nþm

; ð3:2Þ
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where

Dk ¼ jjQk
nPk

nþm � Qk
nþmPk

n jj:

Using relation (2.5), we get

Dk ¼ jjðBkQk
nþm þ akþ1 %P

kþ1
nþmÞQk

n � ðBkQk
n þ akþ1 %P

kþ1
n ÞQk

nþmjj

¼ jjakþ1ð %Pkþ1
nþmQk

n � %Pkþ1
n Qk

nþmÞjj ¼ jj %akþ1ðPkþ1
nþmQk

n � Pkþ1
n Qk

nþmÞjj:

From this it follows that

D2
k ¼ trf %akþ1ðPkþ1

nþmQk
n � Pkþ1

n Qk
nþmÞakþ1½ð %Pkþ1

nþmÞ
T

Qk
n � ð %Pkþ1

n ÞT
Qk

nþm	g

¼ jakþ1j2ðjjPkþ1
nþmjj

2ðQk
nÞ

2

� 2 Re½trðPkþ1
nþmð %Pkþ1

n ÞT Þ	Qk
nQk

nþm þ jjPkþ1
n jj2ðQk

nþmÞ
2Þ

¼ jakþ1j2jjPkþ1
nþmjj

2jjPkþ1
n jj2 jjPkþ1

n jj2

ðQkþ1
n Þ2

�
2 Re½trðPkþ1

nþmð %Pkþ1
n ÞT Þ	

Qkþ1
n Qkþ1

nþm

þ
jjPkþ1

nþmjj
2

ðQkþ1
nþmÞ2

 !

¼ jakþ1j2jjPkþ1
nþmjj

2jjPkþ1
n jj2jjPkþ1

n =Qkþ1
n � Pkþ1

nþm=Qkþ1
nþmjj

2:

Therefore, we obtain

Dk ¼ jakþ1jjjPkþ1
nþmjjjjPkþ1

n jjjjPkþ1
n =Qkþ1

n � Pkþ1
nþm=Qkþ1

nþmjj

¼
jakþ1jjjPkþ1

n jjjjPkþ1
nþmjj

Qkþ1
n Qkþ1

nþm

Dkþ1:

Continuing the above process, it follows that

Dk ¼
jakþ1jjjPkþ1

n jjjjPkþ1
nþmjj

Qkþ1
n Qkþ1

nþm

Dkþ1

^

¼ jakþ1j?janjðjjPkþ1
n jj?jjPn

njjÞðjjPkþ1
nþmjj?jjPn

nþmjjÞ
ðQkþ1

n ?Qn
nÞðQkþ1

nþm?Qn
nþmÞ

Dn;

where

Dn ¼ jjQn
nPn

nþm � Pn
nQn

nþmjj

¼ jjBnQn
nþm þ anþ1 %P

nþ1
nþm � BnQn

nþmjj ¼ janþ1jjjPnþ1
nþmjj:

Hence, we have

Dk ¼
jakþ1j?janþ1jðjjPkþ1

n jj?jjPn
njjÞðjjPkþ1

nþmjj?jjPnþ1
nþmjjÞ

ðQkþ1
n ?Qn

nÞðQkþ1
nþm?Qn

nþmÞ

¼ jakþ1j?janþ1j
ffiffiffiffiffiffi
Qk

n

q ffiffiffiffiffiffiffiffiffiffiffi
Qk

nþm

q ffiffiffiffiffiffiffiffiffiffiffi
Qnþ1

nþm

q
:
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Consequently, according to (3.2), we conclude that

Pk
nþm

Qk
nþm

� Pk
n

Qk
n





















 ¼ jakþ1j?janþ1j

ffiffiffiffiffiffiffiffiffiffiffi
Qnþ1

nþm

q
ffiffiffiffiffiffi
Qk

n

p ffiffiffiffiffiffiffiffiffiffiffi
Qk

nþm

q :

In particular, for k ¼ 0; it follows that

P0
nþm

Q0
nþm

� P0
n

Q0
n





















 ¼ ja1j?janþ1j

ffiffiffiffiffiffiffiffiffiffiffi
Qnþ1

nþm

q
ffiffiffiffiffiffi
Q0

n

p ffiffiffiffiffiffiffiffiffiffiffi
Q0

nþm

p
and hence equality (3.1) is proved. &

It is easy now to give an expression for the difference of two consecutive
convergents of MVCF. In fact, by Theorem 2 with p ¼ 1; 2 and by using (2.4), it
follows immediately that

Corollary 1. The formula

Pnþ1

Qnþ1
� Pn

Qn





















 ¼ P0

nþ1

Q0
nþ1

� P0
n

Q0
n

























 ¼ ja1j?janþ1jffiffiffiffiffiffi

Q0
n

p ffiffiffiffiffiffiffiffiffiffi
Q0

nþ1

q ðn ¼ 0; 1;yÞ ð3:3Þ

holds true for two approximants Pnþ1=Qnþ1 and Pn=Qn of matrix-valued continued

fraction (2.1), and the formula

Pnþ2

Qnþ2
� Pn

Qn





















 ¼ P0

nþ2

Q0
nþ2

� P0
n

Q0
n



























¼ ja1j?janþ1jjjBnþ2jjffiffiffiffiffiffi
Q0

n

p ffiffiffiffiffiffiffiffiffiffi
Q0

nþ2

q ðn ¼ 0; 1;yÞ ð3:4Þ

holds true for two approximants Pnþ2=Qnþ2 and Pn=Qn of matrix-valued continued

fraction (2.1).

In the scalar case, namely k ¼ 1 and l ¼ 1; Bn ðn ¼ 0; 1; 2;yÞ are scalars. Using
the same idea in Theorem 2, we can prove the following theorem.

Theorem 3. The formula

Pnþm

Qnþm

� Pn

Qn

¼ ð�1Þna1?anþ1ð %P1
n? %Pn

nÞð %P1
nþm? %Pnþ1

nþmÞ
ðQ0

n?Qn
nÞðQ0

nþm?Qn
nþmÞ

8m; nAN ð3:5Þ

holds true for any ðm þ nÞth approximant P0
nþm=Q0

nþm (or Pnþm

Qnþm
Þ and nth approximant

P0
n=Q0

n (or Pn

Qn
Þ of complex continued fraction (1.1), where Pi

n and Qi
n are decided by

(2.4)–(2.6).

Further, (3.1) is valid.
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Obviously, Formula (3.5) is different from the following formula [see [22]]:

Pnþm

Qnþm

� Pn

Qn

¼ �f
ðmÞ

n

hn þ f
ðmÞ

n

Pn

Qn

� Pn�1

Qn�1

� �
for n ¼ 1; 2;y;

where f
ðmÞ

n ¼ anþ1j
jbnþ1

þ?þ anþmj
jbnþm

; hn ¼ �S�1
n ðNÞ for n ¼ 0; 1; 2;y; m ¼ 1; 2;y; n and

where

S0ðwÞ ¼ s0ðwÞ; SnðwÞ ¼ Sn�1ðsnðwÞÞ n ¼ 1; 2;y

s0ðwÞ ¼ b0 þ w; snðwÞ ¼
an

bn þ w
n ¼ 1; 2;y:

8<
:

4. Convergence theorems and truncation error

The applications of MVCF (2.1) are often tied to their possible convergence. It is
therefore important to have convergence criteria that are easy to check and cover
large classes of MVCFs. In this section, we will show that relation (3.1) has wide
applications in the convergence of MVCF.

A nonterminating matrix-valued continued fraction (2.1) is called convergent if
the sequence fRng of approximants is convergent, that is

lim
n-N

Rn ¼ lim
n-N

P0
n

Q0
n

¼ lim
n-N

Pn

Qn

¼ R

and the matrix R is taken as the value of the matrix-valued continued fraction. But if
no limit exists, then matrix-valued continued fraction (2.1) is called divergent and no
matrix value is assigned to it.

Clearly, according to the Cauchy criterion for convergence, the above statements
are equivalent to the following:

The value of the matrix-valued continued fraction exists if conditions (a) and (b)
below are satisfied:

(a) At most a finite number of the denominators Bk vanish.
(b) For every positive e; there exists an N such that, for nXN

Pnþm

Qnþm

� Pn

Qn





















oe for all positive m: ð4:1Þ

Next, Using Theorem 2, we give a necessary condition for the convergence of
MVCF.

Theorem 4. The matrix-valued continued fraction (2.1) with all an ¼ 1 diverges ifP
i jjBijj ¼ MoN:
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Proof. First, the following inequalities are easily proved by induction on k;ffiffiffiffiffiffi
Qk

n

q
pð1þ jjBnjjÞð1þ jjBn�1jjÞ?ð1þ jjBkþ1jjÞ

for all nA N; and 0pkon: ð4:2Þ

In fact, it follows from Qn�1
n ¼ jjBnjj2 in (2.4) thatffiffiffiffiffiffiffiffiffiffi

Qn�1
n

q
pð1þ jjBnjjÞ

which proves (4.2) for k ¼ n � 1:
Next, assume that for all k not exceeding n

Qk
npð1þ jjBnjjÞð1þ jjBn�1jjÞ?ð1þ jjBkþ1jjÞ

then from relation (2.6), we haveffiffiffiffiffiffiffiffiffiffiffi
Qk�1

n

q
pjjBkjj

ffiffiffiffiffiffi
Qk

n

q
þ

ffiffiffiffiffiffiffiffiffiffiffi
Qkþ1

n

q
:

Hence, by induction on k; it follows thatffiffiffiffiffiffiffiffiffiffiffi
Qk�1

n

q
p jjBkjj

Yn

i¼kþ1

ð1þ jjBijjÞ þ ð1þ jjBnjjÞð1þ jjBn�1jjÞ?ð1þ jjBkþ2jjÞ

p ð1þ jjBnjjÞð1þ jjBn�1jjÞ?ð1þ jjBkþ2jjÞðjjBkjjð1þ jjBkþ1jjÞ þ 1Þ

p ð1þ jjBnjjÞð1þ jjBn�1jjÞ?ð1þ jjBkþ2jjÞð1þ jjBkþ1jjÞð1þ jjBkjjÞ

which proves (4.2).
Moreover, by (4.2) with k ¼ 0; it follows in particular thatffiffiffiffiffiffi

Q0
n

q
pð1þ jjBnjjÞð1þ jjBn�1jjÞ?ð1þ jjB1jjÞ

and ffiffiffiffiffiffiffiffiffiffi
Q0

nþ1

q
pð1þ jjBnþ1jjÞð1þ jjBnjjÞ?ð1þ jjB1jjÞ:

Using the inequality

1þ xpex for x40

we haveffiffiffiffiffiffi
Q0

n

q
pexpðjjBnjjÞ expðjjBn�1jjÞ?expðjjB1jjÞoexp

XN
i¼1

jjBijj
 !

¼ eM ð4:3Þ

and ffiffiffiffiffiffiffiffiffiffi
Q0

nþ1

q
p expðjjBnþ1jjÞ expðjjBnjjÞ?expðjjB1jjÞ

o exp
XN
i¼1

jjBijj
 !

¼ eM : ð4:4Þ
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Now, assume that the continued fraction B0 þ Kð1=BnÞ converges, then from (3.4), it
follows that

lim
n-N

P0
nþ1

Q0
nþ1

� P0
n

Q0
n

























 ¼ lim

n-N

1ffiffiffiffiffiffi
Q0

n

p ffiffiffiffiffiffiffiffiffiffi
Q0

nþ1

q ¼ 0:

But from (4.3) and (4.4), we get

1ffiffiffiffiffiffi
Q0

n

p ffiffiffiffiffiffiffiffiffiffi
Q0

nþ1

q 4
1

e2M
40; a contradiction:

Hence the continued fraction B0 þ Kð1=BnÞ diverges. &

Theorem 5. Let all the elements of Bn ðn ¼ 1; 2;yÞ be positive, namely Bn are positive

matrices for all n; then the matrix-valued continued fraction Kð1=BnÞ converges if and

only if
P

N

n¼1 jjBnjj ¼ N:

Proof. If
P

N

n¼1 jjBnjj ¼ N; then Kð1=BnÞ diverges by Theorem 4. Let
P

N

n¼1 jjBnjj ¼
N: To prove the convergence of Kð1=BnÞ; it suffices to prove that the sequence

P0
n

Q0
n

n o
of approximants is a Cauchy sequence, namely, we need to prove, for any mAN;

lim
n-N

P0
nþm

Q0
nþm

� P0
n

Q0
n





















 ¼ 0 ð4:5Þ

is true.

Since the Bn ðn ¼ 0; 1;yÞ are positive matrices, it follows from (2.5) that also Pk
n

are positive matrices for all nAN; and 0pkon: Hence, it follows from (2.4) and (2.6)
that

Qk
2nXjjBkþ1jj2Qkþ1

2n þ Qkþ2
2n with Q2n

2n ¼ 1; Q2n�1
2n ¼ jjB2njj2:

Clearly, the above inequalities imply that

Q0
2n4Q2

2n4?4Q2n
2n ¼ 1

and

Q1
2n4Q3

2n4?4Q2n�1
2n ¼ jjB2njj2:

On the other hand, if we let Biðs; tÞ; Piþ1
n ðs; tÞ denote the elements from the sth row

and tth column of the matrix Bi and Piþ1
n ; respectively, it follows from (2.5) that

Pi
nðs; tÞ ¼ Biðs; tÞQi

n þ Piþ1
n ðs; tÞXBiðs; tÞQi

n þ Piþ2
n ðs; tÞ:

In particular, we have

P2i
2nðs; tÞXB2iðs; tÞQ2i

2n þ P2iþ2
2n ðs; tÞ

and it follows from Q2i
2n41 that

P2i
2nðs; tÞ4B2iðs; tÞ þ P2iþ2

2n ðs; tÞ ði ¼ 0; 1;y; n � 1Þ:
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Expanding P2i
2nðs; tÞ from i ¼ 0 to i ¼ n � 1 in the same manner, and continuing

the process, one obtains

P0
2nðs; tÞ4B0ðs; tÞ þ P2

2nðs; tÞ4B0ðs; tÞ þ B2ðs; tÞ þ P4
2nðs; tÞ

4?4B0ðs; tÞ þ B2ðs; tÞ þ?þ B2nðs; tÞ: ð4:6Þ

In the same way, one can prove that

Q2nþ1
2nþ1 ¼ 1; Q2n

2nþ1 ¼ jjB2nþ1jj2; Q0
2nþ14Q2

2nþ14?4Q2n
2nþ1 ¼ jjB2nþ1jj2;

Q1
2nþ14Q3

2nþ14?4Q2nþ1
2nþ1 ¼ 1

(

furthermore

P1
2nþ1ðs; tÞ4B1ðs; tÞ þ B3ðs; tÞ þ?þ B2nþ1ðs; tÞ: ð4:7Þ

Since
P

N

n¼1 jjBnjj ¼ N; then using a proof by contradiction, at least there exists some

s0; t0 ð1ps0pk; 1pt0plÞ such that
P

N

n¼1 jBnðs0; t0Þj ¼ N:

From (4.6) and (4.7), we have

lim
n-N

P0
2nðs0; t0Þ ¼ N ð4:8Þ

or

lim
n-N

P1
2nþ1ðs0; t0Þ ¼ N: ð4:9Þ

Without lose of generality, we assume that limn-N P0
2nðs0; t0Þ ¼ N: From this, it

follows that

lim
n-N

jjP0
2njj ¼ N: ð4:10Þ

According to (2.6), it follows that

Q0
2nXjjB1jj2Q1

2n:

From this and (2.8), one obtains

jjP0
2njj

2 ¼ Q0
2nQ1

2np
ðQ0

2nÞ
2

jjB1jj2

so that

Q0
2nXjjB1jjjjP0

2njj:

On the base of (4.10), we have

lim
n-N

Q0
2n ¼ N

and taking into account inequalities (4.6) and formula (3.1), we find

P0
2nþm

Q0
2nþm

� P0
2n

Q0
2n

























 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2nþ1

2nþm

q
ffiffiffiffiffiffiffiffi
Q0

2n

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
Q0

2nþm

q o
1

jjB1jj
ffiffiffiffiffiffiffiffi
Q0

2n

q -0 ðn-NÞ ð4:11Þ
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and

P0
2nþm

Q0
2nþm

� P0
2n�1

Q0
2n�1

























p P0

2nþm

Q0
2nþm

� P0
2n

Q0
2n

























þ P0

2n�1

Q0
2n�1

� P0
2n

Q0
2n























o

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2nþ1

2nþm

q
ffiffiffiffiffiffiffiffi
Q0

2n

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
Q0

2nþm

q þ 1ffiffiffiffiffiffiffiffiffiffiffiffi
Q0

2n�1

q ffiffiffiffiffiffiffiffi
Q0

2n

q
p

2

jjB1jj
ffiffiffiffiffiffiffiffi
Q0

2n

q -0 ðn-NÞ: ð4:12Þ

Hence, from (4.11) and (4.12), we complete the proof of (4.5), namely, the

sequence fP0
n

Q0
n
g of approximants is a Cauchy sequence and thus according to the

Cauchy criterion for convergence, it converges. &

Obviously, Theorems 4 and 5 are exact generalizations of the scalar results [see
[22].

Theorem 6. If the inequalities

jjBijjXd þ jaiþ1j for all i ¼ 0; 1; 2;y; where d41 ð4:13Þ

hold true, then matrix-valued continued fraction (2.1) converges to matrix value R and

the truncation error jR � Rnjpð1
d
Þn:

Proof. First, we can prove the following inequality by induction on k:

Qk
nXQkþ1

n for 8n and k ¼ 0; 1;y; n � 1; ð4:14Þ

when k ¼ n � 1; inequality (4.14) is immediate from relation (2.4).
Now, let formula (4.14) be true for all the natural number k þ 1 not exceeding n;

then from relation (2.6) and by the induction hypothesis, we obtainffiffiffiffiffiffi
Qk

n

q
XjjBkþ1jj

ffiffiffiffiffiffiffiffiffiffiffi
Qkþ1

n

q
� jakþ2j

ffiffiffiffiffiffiffiffiffiffiffi
Qkþ2

n

q
; ð4:15Þ

ffiffiffiffiffiffi
Qk

n

q
�

ffiffiffiffiffiffiffiffiffiffiffi
Qkþ1

n

q
X jakþ2j

ffiffiffiffiffiffiffiffiffiffiffi
Qkþ1

n

q
�

ffiffiffiffiffiffiffiffiffiffiffi
Qkþ2

n

q� �

X jakþ2jjakþ3j?janj
ffiffiffiffiffiffiffiffiffiffi
Qn�1

n

q
�

ffiffiffiffiffiffi
Qn

n

p� �
X jakþ2j?janjðjjBnjj � 1ÞX0 ð4:16Þ

which completes the proof of (4.14).
In particular, from (4.16) and (4.13), we getffiffiffiffiffiffi

Q0
n

q
Xja1jja2j?janjðjjBnjj � 1ÞXja1jja2j?janþ1j: ð4:17Þ
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Next, from relations (4.13)–(4.15), for 8m; n40 and 0pkon; we haveffiffiffiffiffiffiffiffiffiffiffi
Qk

nþm

q
X jjBkþ1jj

ffiffiffiffiffiffiffiffiffiffiffi
Qkþ1

nþm

q
� jakþ2j

ffiffiffiffiffiffiffiffiffiffiffi
Qkþ2

nþm

q
X ðjjBkþ1jj � jakþ2jÞ

ffiffiffiffiffiffiffiffiffiffiffi
Qkþ1

nþm

q
X d

ffiffiffiffiffiffiffiffiffiffiffi
Qkþ1

nþm

q
: ð4:18Þ

Continuing the above process, we obtainffiffiffiffiffiffiffiffiffiffiffi
Q0

nþm

q
Xd

ffiffiffiffiffiffiffiffiffiffiffi
Q1

nþm

q
X?Xdnþ1

ffiffiffiffiffiffiffiffiffiffiffi
Qnþ1

nþm

q
: ð4:19Þ

Thus, taking into account inequality (4.17), (4.19) and formula (3.1), it follows for
8m40; that

p0
nþm

Q0
nþm

� p0
n

Q0
n





















 ¼ ja1jja2j?janþ1j

ffiffiffiffiffiffiffiffiffiffiffi
Qnþ1

nþm

q
ffiffiffiffiffiffi
Q0

n

p ffiffiffiffiffiffiffiffiffiffiffi
Q0

nþm

p o
1

dnþ1
-0 ðn-NÞ: ð4:20Þ

Hence, from (4.20), the sequence fP0
n

Q0
n
g of approximants is a Cauchy sequence, and

thus according to the Cauchy criterion for convergence, it converges to a matrix

value R: From (4.20), clearly, the truncation error bounds jR � Rnjpð1
d
Þnþ1; which

completes the proof of Theorem 6. &

It would be desirable to extend the theorem to the case d ¼ 1 so as to get a
Śleszyński–Pringsheim-like theorem, But it appears that it will require a proof of a
different type than that above. Here, we need to point out Theorem 6 is a bit
different from the Śleszyński–Pringsheim Theorem. The Śleszyński–Pringsheim
Theorem for continued fractions

Kðan=bnÞ ¼
a1j
jb1

þ a2j
jb2

þ?þ anj
jbn

þ?; ð4:21Þ

where an; bnAC with all ana0; says that Kðan=bnÞ converges to a value f if

jbnjX1þ janj for all n: ð4:22Þ

But in our case, the condition of theorem is jbnjXd þ janþ1j; d41: In addition, as
we know, by means of (4.22) and equivalence transformation of CF, it can give new
convergence criteria, but it appears improbable to get Theorem 6 by this method.
Therefore, we can say that Theorem 6 appears a new convergence criteria for
continued fraction (4.21).

Proceeding with the similar method in Theorems 5 and 6, we can prove the
following conclusions. Here, we only give a sketch of the proofs of these theorems,
we leave the details to the reader.

H.-xi. Zhao, G. Zhu / Journal of Approximation Theory 120 (2003) 136–152 149



Theorem 7 (Worpitzky-like theorem). Let jjBnjj ¼ 2; janjp1 for all n; then MCVF

Kð 1
Bn
Þ converges, and if limn-N Rn ¼ R; one gets

jjRn � Rjjp ja1a2?anj
2þ

Pn
i¼2 jai?anj

:

Moreover, if
P

k ja1?akj ¼ a; then jjRn � Rjjp a
n2:

Proof. As we saw previously in the proof of Theorem 6, paying attention to jjBnjj ¼
2 in (4.16), we haveffiffiffiffiffiffi

Qk
n

q
X

ffiffiffiffiffiffiffiffiffiffiffi
Qkþ1

n

q
þ jakþ2j?janj: ð4:23Þ

Repeating the above proceeding from k ¼ 0 to n � 1; we getffiffiffiffiffiffi
Q0

n

q
X

ffiffiffiffiffiffiffiffiffiffi
Qn�1

n

q
þ
Xn�2

k¼0

jakþ2j?janj ¼ 2þ
Xn

k¼2

jakj?janj: ð4:24Þ

From (4.23) we immediately obtainffiffiffiffiffiffiffiffiffiffiffi
Q0

nþm

q
X

ffiffiffiffiffiffiffiffiffiffiffi
Qnþ1

nþm

q
: ð4:25Þ

By using Theorem 2 and from (4.24) and (4.25), Theorem 7 is valid.
In the scalar case, using a geometric argument, the similar truncation error results

are stated in [4]. &

Theorem 8. If the inequalities

jjBkjjX2 for all k ¼ 1; 2;y

hold true, then matrix-valued continued fraction
P

N

i¼1
1j
jBn

converges to matrix value R

and the truncation error jR � Rnj ¼ 0ð1
n
Þ:

Proof. Paying attention to jjBnjjX2 and janj ¼ 1 for all n in (4.16), we getffiffiffiffiffiffi
Q0

n

q
Xn þ 1: ð4:26Þ

Using (4.18), we haveffiffiffiffiffiffiffiffiffiffiffi
Q0

nþm

q
X

ffiffiffiffiffiffiffiffiffiffiffi
Qnþ1

nþm

q
: ð4:27Þ

From (4.26), (4.27) and Theorem 2, we find Theorem 8 is true. &

Theorem 9. If Bk are positive matrices and ak ðk ¼ 0; 1; 2yÞ are positive, and for all

k; the inequalities

jjBkjjXak; jjBkjjXd; where d40

are satisfied, then matrix-valued continued fraction (2.1) converges.
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Proof. Since Bk are positive matrices and ak ðk ¼ 0; 1; 2yÞ are positive, using (2.6),
It is easy to see that

Qk
nXjjBkþ1jj2Qkþ1

n ;

Qk
nXjakþ2j2Qkþ2

n :

(
ð4:28Þ

Furthermore, using jjBkjjXak; jjBkjjXd; it follows from (2.6) and (4.28) that

Qk
nXjakþ2j2ð1þ d2ÞQkþ2

n : ð4:29Þ
From (4.28) and (4.29), we see that

Q0
2nXja2j2ð1þ d2ÞQ2

2nX?Xð1þ d2ÞnQn
k¼1 ja2kj2;

Q0
2nþmXjjB1jj2Q1

2nþmX?XjjB1jj2ð1þ d2Þn
Q2nþ1

2nþm

Qn
k¼1 ja2kþ1j2:

(
ð4:30Þ

From (4.30), we have

Q0
2nQ0

2nþmXjjB1jj2ð1þ d2Þ2n
Q2nþ1

2nþm

Y2nþ1

k¼2

jakj: ð4:31Þ

Similarly, we obtain

Q0
2nþ1Q0

2nþ1þmXjjB1jj2ð1þ d2Þ2nþ1
Q2nþ2

2nþm

Y2nþ2

k¼2

jakj: ð4:32Þ

From (4.31) and (4.32), using Theorem 2, the proof of Theorem 9 is
straightforward and so is omitted. &

It is clear that Theorems 7, 8 and 9 are exact generalizations of the scalar results
[see [4,6]].
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