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Abstract

We discuss the properties of matrix-valued continued fractions based on Samelson inverse.
We begin to establish a recurrence relation for the approximants of matrix-valued continued
fractions. Using this recurrence relation, we obtain a formula for the difference between mth
and nth approximants of matrix-valued continued fractions. Based on this formula, we give
some necessary and sufficient conditions for the convergence of matrix-valued continued
fractions, and at the same time, we give the estimate of the rate of convergence. This paper
shows that some famous results in the scalar case can be generalized to the matrix case, even
some of them are exact generalizations of the scalar results.
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1. Introduction

A continued fraction is an expression of the form
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where the @; and b; are real (or complex) numbers or functions, and the theories and
properties of continued fractions are well known in the scalar case. But more general
forms of continued fraction (1.1) where a; and b; are no longer real or complex
numbers are possible. They may be vectors, matrixes or the elements of some Banach
algebra. There clearly exists some interest in extending these kinds of theories and
properties to the vector or matrix case, and these extensions occur in computations
of various mathematical, physical and control problems [see [2,5,7-19,23,25,30,31]].
For example, in control theory for expansion of the transfer function of multivariate
control systems, in theoretical physics for investigations of the Brownian motion and
of the an harmonic oscillator eigenvalues, in perturbation theory, as well as in
rational interpolation and approximation. Here, we especially refer to the works of
Wynn et al. In 1963, Wynn used continued fractions and generalized inverses for the
reciprocals of vector-valued quantities, and proposed a method of rational
interpolation of vector-valued quantities given on a set of distinct interpolation
points [see [32,33]]. In [7-13,25,30], Graves-Morris, etc., showed that the generalized
(Samelson) inverse of vector can be used to define vector-valued Thiele type rational
interpolations and vector Padé approximants, and indicated that generalized inverse
vector rational interpolations had wide applications in the modal analysis of
vibrating structures and the solution of integral equations. In [14,15,17,18,34,35],
Zhu Gong-qin and C.Q. Gu, etc., introduced the generalized inverse vector
continued fraction approximation of vector-valued functions and indicated that the
generalized inverse vector rational interpolant can be extended to the bivariate and
the matrix case. In [35], by defining a kind of transformation from matrix to vector,
some results on vector-valued continued fraction can be transferred to those
corresponding to matrix-valued continued fraction, but, as we know, vector-valued
continued fraction is obviously special case of matrix-valued continued fraction.
Therefore, in this paper, we restrict our considerations to the matrix case. Here, we
should point out that a different matrix inverse can give the different definition of a
matrix continued fraction, so we can extend definition from the scalar case to the
matrix case in the following three ways. In [1,2,19,23,24,26], the fraction of matrix is
AB~! with the classical inverse matrix, and in [3,6,28,29,31], the inverse of matrix is a
partial inverse, namely, if the matrix B = (b;;) then the partial inverse of matrix

mxn?

B is
1 1 _
E = (B)P - B2Bl
here,
bm,l bm.n
0
Bl = )
0 . 0
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b i by,
By — 11 1,

bm—l,l bm—l,n mxn

Therefore, for convenience the above matrix continued fractions defined by the
classical matrix inverse or partial matrix inverse are called the classical inverse matrix
continued fractions or the partial inverse matrix continued fractions, respectively,
and they are both examples of noncommutative continued fractions in Banach
spaces. In our case, the evaluation process is based on the use of the generalized
inverse for matrix [see Section 2 or [14,16,35]], so the considered continued fractions
which can be named matrix-valued continued fractions or generalized inverse matrix
continued fractions in this paper, is not the same as these in [1-3,5,19,23,24,26—
28,31]. In [16], it is shown that the generalized inverse is efficient in matrix continued
fraction interpolation problems as compared with classical matrix inverse, and as
compared to the existing matrix Padé approximants, the generalized inverse matrix
Padé approximation has a lot of advantages. For example, first, it does not need
multiplication of matrices in the construction process, hence, we do not have to
define left- and right-handed approximants, and it may be useful in the
noncommutativity problems of the matrix multiplication. Second, the generalized
inverse matrix Padé approximation can be applied to singular or rectangle matrices.

For the classical inverse or partial inverse matrix continued fractions, some
properties about them are obtained [see [1,3,5,24,27,28,31]], But in our case, not
much are known, and many problems are not still answered. For example, can the
classical three term recurrence relation be generalized in a practical way to our case?
How to get the properties of the approximants of MVCF? In particular, the
applications of continued fractions are often tied to their possible convergence,
therefore, the convergence criteria are important in the theory of matrix-valued
continued fractions. But up to now, the convergence property for MVCF has not
been reported. In scalar case, the main methods we use to derive the convergence
criteria for continued fractions are based upon three term recurrence relation or
some very nice mapping properties of linear fractional transformations or value
regions techniques for continued fractions. However, in more general case, such as in
our case, it should be noted that it appear difficult to find recurrence relations similar
to the famous three-term recurrence relation which can be used to derive surprisingly
good results in the convergence theory for continued fractions. Therefore, those
methods cannot be used in the proofs of the convergence criteria for MVCEF. In [34],
using a particular technique, a simple Pringsheim convergence theorem was proven

for vector-valued continued fraction of the form K[1 /I;k], but it may be difficult or
even impossible to prove best known and(or) the widest applicable classical
convergence theorems for MVCEF directly using the method introduced in [3,5,11,20—
22,24,27,28,31,34]. In this paper, we answer some of these questions. We firstly
establish a recurrence relation for MVCF, and using this recurrence, we construct a
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formula for the difference between mth and nth approximants of MVCF. Based on
this formula, we give a approach to prove the convergence properties of MVCF.
This paper shows that some famous results in the scalar case are similar to those in
the matrix case, even some of them are exact generalizations or improvement of the
scalar results.

2. Recurrence relation

By a matrix-valued continued fraction, we mean an expression of the form

B0+Z‘—é7 (2.1)

where B;eC*, g;eC, fori=0,1,2, ....
The above evaluation process is based on the use of the generalized (Samelson)
inverse for matrix:

AT = A/ AP, 40, (22)
where 4 denotes the complex conjugate of matrix 4 and
k1
AIP = o(AA)T) =Y > lagl’, A= (ay)eCT™, k,leN
=1 j=I

where (4)” denotes the complex conjugate transpose of matrix 4 and |lajj| is the
modulus of a;. Making use of the above generalized inverse for matrix, matrix-
valued continued fractions have been discussed in [14,17,18].

Similar to the scalar case, the nth approximant of MVCEF is defined as

Ry Byt 4l @l (n=0,1,...). (2.3a)

|B | B,
Clearly, R, is a rational expression
P,
R, =—,
On

where P, and Q, are, respectively, called the nth numerator and denominator of
(2.3a), and they are actually defined later as P9, Q0 via (2.4)—(2.6).
The truncation

et 1| a|
_|_ e
|Bk+l |Bn

is called the kth tail of the nth approximant of MVCF (2.1).
Similarly, Rk is a rational expression

RF = P—I"c,
[0

RY =B+

(n=0,1,....; k=0,1,....,n) (2.3b)
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where Pﬁ and Qﬁ, are, respectively, called the kth numerator and denominator of
(2.3Db).
Clearly, we have

Qn Qn

Now, we want to establish a recurrence relation for PX and QX. Namely, we have

Ry

Theorem 1. For any positive integer n, let

Py=B,, Q=1 Q' =B} (n=1.2..), (2.4)
Pl =B, +ai, P (i=n—1,...,0), (2.5)

0h = ||Bint [P Q4 + 2 Reltr(@ia Py B], )] + laial* 0
(i=n-2,...,1,0), (2.6)

then we have

(1) 0.>0 (n=0,1,.... i=nn—1,..,1,0), (2.7)
(2) ||PZ||2:Q;'1Q£171 (i:n,n—l,...,l), (2'8)
. P! aip1| | aiol a|
)R ="r—pg L NI
®) i B B |B,
i=nn-1,..,10). (2.9)

Proof. The proof is performed by induction.
(1) For any k<n, from (2.6), we have

2 — 2
O =|Be|P O™ + 2Re[tr(@rs2 P B, )] + larsal 052
> i} = \Th 2
> [|Bea|P Q5 — |tr(awa PSPBLL) + tr(arsa(Bicer) PR+ | 052

2 2
> || Bt PO = 2lagsal - [|PE2|| || Bt || + |awsal Q82
= ([|Bes1]]y/ Q5! — |axsaly/ 052)* =0

which completes the proof of relation (2.7).

(2) For i = n, equality (2.8) is immediate from relation (2.4).

Now, let us assume that for i =k, 1<k<n, equality (2.8) is true. We shall
prove it for i = k — 1. It follows from (2.5), (2.6) and by the induction hypothesis
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that
1Py P = or{( BHQ"‘] +acP)(Bi)' oy +a(Py)")}
= 1B |P(Q) + @ Hler(@ PL BT )]
+ fr[flkainfd} + la || Py
=[1Be|P(Q5 ) + Q5 "2Re{1r(@ Py BL,)} + a1 P51
=0y H{IIBe POy + 2Re{mr(a@PiB )} + |axl* Of}

k—1 k-2
=0, 0,

which implies equality (2.8) is valid.
(3) When i = n, from (2.4), formula (2.9) is obviously true.

Next, let equality (2.9) hold for i = k. Then when i = k£ — 1, from (2.5), (2.8) and
by the induction hypothesis, we have

P! :BIHQQ'_] + a PY _ B, 1+“kpn _ B, 1+"k||P§||2
6T o e g
‘ ak+1| an|
B+ B 4 e
gk |Br  |Bri1 | By

which completes the proof of (2.9) O

3. Approximants formulae

In this section, we give a formula for the difference between mth and nth
approximants of matrix-valued continued fractions. In general, those formulae are
important for truncation error estimate and convergence theory of MVCF.

Theorem 2. The formula

Pn+m _ &
Qn+m Qn
|a1|'“|an+l‘ QZirln
"+m—— for any n,meN (3.1)
0 / / ’ :
‘ ‘Qner Q Qg l(’]H—ﬂZ

holds true for two convergents Pyim/Quim and P,/Q, of matrix-valued continued
fraction (2.1).

Proof. Let
Ak
ntm _ " n|| _ ) (32)
H n+m Qk Qk n+m
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where
A =|OP,,, — O, Ph|.

n- n+m n+m* n

Using relation (2.5), we get

A =|(BeQy + ki1 PN ) O — (BiOp + ara Py Ol

= a1 (P @ — P Ol = @k (PLL, 0 — PO

n+m n+m n—+m

From this it follows that

A = tr{@g1 (PEL, 08 — PRI OE L ay [(PED)) T OF — (PETHYT 0

n—+m

2 k 2 i\ 2
:|ak+l| (||Pnil£1|| (Qn)

= 2Reltr(PyL, (P O8O + 1P (1))

n+m n+m n+m

n n+m n+m

n—+m

-

I}

2 ke pk+1\T k 2
_|a |2||Pk+l||2||Pk+lH2 ||Pﬁ+l” _2Re[lr(Pnjr—}!n(Pn+l) )]_|_||Pnjr_)£f1||
1A EenlIS gy 00T (041L)°
n n n+m
2 2| pk 21| pk k k s 2
= a1 Pl P L PP PP O = P/ Ol

Therefore, we obtain

k k k s k
A = laa 1P LN PP/ Q5 = Prls/ Ot
a2,

n+m||A
et 1 +1-
O Ol

Continuing the above process, it follows that

s 1 Pk+l Pk+l
Ak _ ‘ + ||| n |||| n+m||Ak+1

1
0! Ol

laice1 |-+ lan| (1231 (PRI PR 1 P

1)
— n+m n+m Anv

(erg_HQZ)( ﬁi/L Z+m)

where

A”:”ann _PZ ZerH

n- n+m
= ||B”Qz+m + anJrlPZirln - BnQZ+n1|| = |an+1 |||PZIII11||
Hence, we have

el lann (1P PRI UIPAL] P

n+m n+m

(Qly;+1 QZ)(Qﬁir]n Z-&-m)

= |ak+l|"' |an+1| Qﬁ \/ Q!;er \/ QZI)]n

Ak

)
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Consequently, according to (3.2), we conclude that

1
[Pl 2|l 125
n+m V Qﬁ \/ Qﬁer
In particular, for & = 0, it follows that
1
H n+m_P_2 _|a1|"'|aﬂ+1‘ Zim
0 A0 /A0
n+m Qn Qg Q2+m

and hence equality (3.1) is proved. [

It is easy now to give an expression for the difference of two consecutive
convergents of MVCF. In fact, by Theorem 2 with p = 1,2 and by using (2.4), it
follows immediately that

Corollary 1. The formula
P°

H ntl n n+l 52 |a1| |a”+l‘ ) (33)
Qn+l n 2+1 Qg A / 1 / QO

holds true for two approximants P,.\/Qn+1 and P,/Q, of matrix-valued continued
fraction (2.1), and the formula

| L
e O
_ Iall---lan+1\||3n+z\|

holds true for two approximants P,./Qui2 and P,/Qy of matrix-valued continued
fraction (2.1).

’ ‘ n+2 n

Qn+2 Qn

=0,1,...) (3.4)

In the scalar case, namely k =1and /=1, B, (n=0,1,2,...) are scalars. Using
the same idea in Theorem 2, we can prove the following theorem.

Theorem 3. The formula

Pn - Pn ]31 ]311 Pl Pn+1
4m  Dn _ (_l)nal an(J)rl( )( n+m’ . n+m) Vm, neN (35)
Onim  On (Qn Qn)( n+m""" n+m>

holds true for any (m + n)th approximant P, /05, (or %) and nth approximant
P°/Q° (or JQL) of complex continued fraction (1.1), where P\ and Q! are decided by
(2.4)-(2.6).

Further, (3.1) is valid.
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Obviously, Formula (3.5) is different from the following formula [see [22]]:

Pn+m Pn _frt('n) (ﬁ _ Pnfl

Qn+m _@ h —‘,—fn(m) Qn Qn—l

> forn=1,2, ...,

where " ‘”,;”“+ ol — S (op) forn=0,1,2,...; m=1,2,...,nand

1 [bysm?
where

So(w) = so(w), Sp(w) = Sy—1(su(w)) n=1,2,...

an
n=12,...
b, +w B

SO(W) = b() +w, Sn(w) -

4. Convergence theorems and truncation error

The applications of MVCF (2.1) are often tied to their possible convergence. It is
therefore important to have convergence criteria that are easy to check and cover
large classes of MVCFs. In this section, we will show that relation (3.1) has wide
applications in the convergence of MVCF.

A nonterminating matrix-valued continued fraction (2.1) is called convergent if
the sequence {R,} of approximants is convergent, that is

and the matrix R is taken as the value of the matrix-valued continued fraction. But if
no limit exists, then matrix-valued continued fraction (2.1) is called divergent and no
matrix value is assigned to it.

Clearly, according to the Cauchy criterion for convergence, the above statements
are equivalent to the following:

The value of the matrix-valued continued fraction exists if conditions (a) and (b)
below are satisfied:

(a) At most a finite number of the denominators By vanish.
(b) For every positive ¢, there exists an N such that, for n>N

H mm_ < for all positive m. (4.1)

Qn+m Qn

Next, Using Theorem 2, we give a necessary condition for the convergence of
MVCEF.

Theorem 4. The matrix-valued continued fraction (2.1) with all a, =1 diverges if
S 1B = M< 0.
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Proof. First, the following inequalities are easily proved by induction on k,
O < (L4 [[Bal ) (1 +[[Bu-tll) -+ (1 + [| Byt )
for all ne N, and 0<k<n. (4.2)
In fact, it follows from Q" ! = ||B,||* in (2.4) that
nt <+ 1Ball)

which proves (4.2) for k =n — 1.
Next, assume that for all k£ not exceeding n

R < (LBl + (1Bt [1)-++ (1 + [[Bisa|])
then from relation (2.6), we have

VO <UIBilly Q5+ /5

Hence, by induction on k, it follows that

O < (1Bl TT (1 +UIBI) + (1 + 1IBull) (1 + [ Buca|]) -+ (1 + || Besal])
i=k+1

< (LBl DA+ [1Bua[]) - (1A [[Biesa D UBilI(T + [ Biegt|]) + 1)
< (LBl DA+ [1Bua[]) -+ (14 [[Biesal ) (1 4 [[ Biesa[[)(1 4[| Be[)

which proves (4.2).
Moreover, by (4.2) with k = 0, it follows in particular that

ON< (14 [[Bul)(1 + [[Bu-tl]) -+ (1 + | Bu]])

and

V@t S+ [[Buga DA+ [[Bal[) - (1 + [ Bi]).

Using the inequality
1 +x<e* for x>0

we have

05 <exp(||Bal]) exp(|[Bu-1) ---exp(|| Bi]]) <6XP<Z IBf||> =M (4.3)
and

i1 < exp([[Brs1|]) exp(|[ Bal|)---exp(|| Bul])

< exp (i |Bi|> =M, (4.4)

i=1
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Now, assume that the continued fraction By + K(1/B,) converges, then from (3.4), it
follows that

) PO PO ) 1
lim ’(1)“ — &l = lim =0
n— o0 n— o0
n+1 n ,/QEQ/Q2+]

But from (4.3) and (4.4), we get

1
7>
/00 . /O
n n+1

Hence the continued fraction By + K(1/B,) diverges. O

a contradiction.

Theorem 5. Let all the elements of B, (n = 1,2, ...) be positive, namely B, are positive
matrices for all n, then the matrix-valued continued fraction K(1/B,) converges if and

only if 3,7 |1BAl| = 0.

Proof. If >~ | ||Bu|| = oo, then K(1/B,) diverges by Theorem 4. Let >~ ||B,|| =
oo. To prove the convergence of K(1/B,), it suffices to prove that the sequence {Pi”)}

[
of approximants is a Cauchy sequence, namely, we need to prove, for any meN,
P P
lim ] (4.5)
n— o ot Q
is true.

Since the B, (n =0, 1, ...) are positive matrices, it follows from (2.5) that also P*
are positive matrices for all ne N, and 0 <k <n. Hence, it follows from (2.4) and (2.6)
that

05, = ||BisiP 05" + 057 with 03 =1, 03" = ||Ba|.
Clearly, the above inequalities imply that

05> 03, > >0y =
and

03,>03,> > 05" = [|Byl”.

On the other hand, if we let Bi(s,¢), P.‘!(s, ) denote the elements from the sth row
and rth column of the matrix B; and Pi'!, respectively, it follows from (2.5) that

Pi(s,t) = Bi(s, )0’ + P/ (s, 1) = Bi(s, ) O\, + P:2(s,1).
In particular, we have
P3, (s, 1) > Bai(s, 1) 03, + P32 (s, 1)
and it follows from Q%j, > 1 that

P2 (5,0)> Boi(s, 1) + P22(s, 1) (i=0,1,....n—1).
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Expanding P% (s,¢) from i =0 to i =n — 1 in the same manner, and continuing
the process, one obtains

PS, (s, 1) > Bo(s, 1) + P3,(s,1)> Bo(s, ) + Ba(s, 1) + P3,(s, 1)
<+ >By(s,t) + Ba(s, t) + -+ + Bau(s,1). (4.6)
In the same way, one can prove that

2 2
{ Qgﬁi} = 1 %ZH - ||BZn+1|| anﬂ >Q%n+l > >Q2n+1 - ||B2n+1H ;

Qi1 >0y > >0l =
furthermore
Pl (s,8)>Bi(s,t) + Bs(s,t) + + + Boys1 (s, 2). (4.7)
Since Y.~ ||Bu|| = o0, then using a proof by contradiction, at least there exists some

s0,f0 (1<s0<k, 1<t9</) such that %, |By,(s0,20)| = 0.
From (4.6) and (4.7), we have

i 0 (o _

nan;lo P, (s0,) = 0 (4.8)
or

lim P}, (s, %) = . (4.9)

n— oo

Without lose of generality, we assume that lim,,_, ., Pgn(so, to) = oo. From this, it
follows that

lim ||P),]| = oo. (4.10)
n— oo

According to (2.6), it follows that
05, =B 03,

From this and (2.8), one obtains

(25,)°
Ak

2
1P2lI° = 05,05, <

so that
05, =|Bi [l 25, -
On the base of (4.10), we have

lim = o©
n— o0 an

and taking into account inequalities (4.6) and formula (3.1), we find

Q§n+l
= i 50 (n—> o) (4.11)

o s,

0
P T 2ntm P(Z)n

Q2n+m
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and
0 0
P2n+m _ Pgnfl < P2n+m _ Pgn 4 ‘ Pgnfl _ Pgn
Q(Z)n+m (2)n— 1 Q(2)n+m an an— 1 Q(2)n
O3 1
< +
\/ an\/an+m \/an—1 \/ an
2
<— 2 0 (n-> ). (4.12)
[|B11]4/ 5,

Hence, from (4.11) and (4.12), we complete the proof of (4.5), namely, the
sequence {%} of approximants is a Cauchy sequence and thus according to the
Cauchy criterion for convergence, it converges. [

Obviously, Theorems 4 and 5 are exact generalizations of the scalar results [see
[22].

Theorem 6. If the inequalities
[|Bi||=d + |aiv1| for all i=0,1,2,..., where d>1 (4.13)

hold true, then matrix-valued continued fraction (2.1) converges to matrix value R and
the truncation error |R — R,| < (%)"_

Proof. First, we can prove the following inequality by induction on k.
k>0 for Vn and k=0,1,...,n—1, (4.14)

when k = n — 1, inequality (4.14) is immediate from relation (2.4).
Now, let formula (4.14) be true for all the natural number k + 1 not exceeding n,
then from relation (2.6) and by the induction hypothesis, we obtain

V O = Bisill\/ 05 — laisaly/ O 2, (4.15)

Vo -2 laal (Vo - /2i)
> |agsa|| a3+ |an] (\/ ot — \/@)

2> |ait2|+|an| (|| Bul| = 1) =0 (4.16)

which completes the proof of (4.14).
In particular, from (4.16) and (4.13), we get

On=lallaa|-|an|([1Bul| — 1) = | [|az] -+ |ans. | (4.17)
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Next, from relations (4.13)—(4.15), for Vm,n>0 and 0<k <n, we have

\ Ok = [|Biir 1\ Okt — lasaly/ O,

> (||Bir1|| = laxs2)y/ Ot

>dy\/ Okl (4.18)

Continuing the above process, we obtain

\/ Q2+m>d Q111+)n> >dn+1 \V Zill‘n' (419)

Thus, taking into account inequality (4.17), (4.19) and formula (3.1), it follows for
Vm>0, that
aillaal - lani /25t

= < N
’ V Qg V 2+m dn+ !

Hence, from (4.20), the sequence {%’Z} of approximants is a Cauchy sequence, and

0 0 7+ 1
pn+m pn

0
n+m QS

0 (n— o). (4.20)

thus according to the Cauchy criterion for convergence, it converges to a matrix
value R. From (4.20), clearly, the truncation error bounds |R — R,|< (5)"“, which
completes the proof of Theorem 6. [

It would be desirable to extend the theorem to the case d =1 so as to get a
Sleszynski—Pringsheim-like theorem, But it appears that it will require a proof of a
different type than that above. Here, we need to point out Theorem 6 is a bit
different from the SleszyﬁskifPringsheim Theorem. The gleszyr'lskifPringsheim
Theorem for continued fractions

_al ol al
K(a"/b")_|b1+|b2+ TR (4.21)

where a,,b,€C with all a,#0, says that K(a,/b,) converges to a value f if
|bn| =1+ |a,| for all n. (4.22)

But in our case, the condition of theorem is |b,|>d + |a,+1|, d>1. In addition, as
we know, by means of (4.22) and equivalence transformation of CF, it can give new
convergence criteria, but it appears improbable to get Theorem 6 by this method.
Therefore, we can say that Theorem 6 appears a new convergence criteria for
continued fraction (4.21).

Proceeding with the similar method in Theorems 5 and 6, we can prove the
following conclusions. Here, we only give a sketch of the proofs of these theorems,
we leave the details to the reader.
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Theorem 7 (Worpitzky-like theorem). Let ||B,|| =2, |a.|<1 for all n, then MCVF

K(%) converges, and if lim,_, ., R, = R, one gets

|a1a2...an|
2+ Z?:z |a; - an|

Moreover, if ), |ai---ar| = a, then ||R, — R||<%.

IRy — R||<

Proof. As we saw previously in the proof of Theorem 6, paying attention to ||B,|| =
2 in (4.16), we have

[ Ok =/ 0K + |agsn] - |anl. (4.23)

Repeating the above proceeding from k =0 to n — 1, we get

n—2 n
VOO D Jaal e lan] =24 Jag] - |anl. (4.24)
k=0 k=2

From (4.23) we immediately obtain

V Oim=y Ot (4.25)

By using Theorem 2 and from (4.24) and (4.25), Theorem 7 is valid.
In the scalar case, using a geometric argument, the similar truncation error results
are stated in [4]. O

Theorem 8. If the inequalities
[|Bel| =2 for all k=1,2,...
hold true, then matrix-valued continued fraction )" % converges to matrix value R

and the truncation error |R — R,| = 0(1).

Proof. Paying attention to ||B,||>2 and |a,| = 1 for all n in (4.16), we get
Q=n+1. (4.26)
Using (4.18), we have

\/ Qngm> \/ Zi)ln' (427)

From (4.26), (4.27) and Theorem 2, we find Theorem 8 is true. [

Theorem 9. If By are positive matrices and a, (k= 0,1,2...) are positive, and for all
k, the inequalities
l|Bel|=ar, ||Bk||=d, where d>0

are satisfied, then matrix-valued continued fraction (2.1) converges.



H.-xi. Zhao, G. Zhu | Journal of Approximation Theory 120 (2003) 136-152 151
Proof. Since By are positive matrices and a; (kK =0,1,2...) are positive, using (2.6),
It is easy to see that

Ok =||Bi| 05,
Ok > |araf 052,
Furthermore, using ||Bx||=ak, ||Bk||=d, it follows from (2.6) and (4.28) that
O >larsa(1+d%) 0+ (4.29)
From (4.28) and (4.29), we see that
S, =@l (1+d)03,> > (1+d)" T}, laxl’,

(4.28)

0 21 2 2\n A2+ T8 2 (4.30)
2n+m>||Bl|| Q2n-‘,—m> >||Bl|| (l +d ) Q2n+m Hk:] |a2k+l| .
From (4.30), we have
5 5 2n+1
05,05, = IBilP (1 +d*)" 05ty T laxl- (4.31)
k=2
Similarly, we obtain
5 - 2n+2
an+1le1+l+m>||Bl|| (1 + dz) " Q%Zii H |Clk|. (432)
k=2

From (4.31) and (4.32), using Theorem 2, the proof of Theorem 9 is
straightforward and so is omitted. [

It is clear that Theorems 7, 8 and 9 are exact generalizations of the scalar results
[see [4,6]].
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